CAR-T cell therapy faces several challenges in the context of solid tumor, including (1) lack of CAR-T cell trafficking to the tumor; (2) antigen heterogeneity of solid tumors; and (3) immunosuppressive tumor microenvironment (TME) which can adversely affect T cell fitness (e.g. differentiation, exhaustion, senescence, and survival). A technological breakthrough needs to be developed to overcome these hurdles.
Viral vector has been widely used for the development of CAR-T cell therapy due to its high efficiency in gene delivery and integration, resulting in stable long-term gene expression. However, CAR-T cells generated virally have several limitations. These include (1) virus-associated safety concerns; (2) limited payload capacity of viral vectors; (3) low expansion capacity and low percentage of CAR+ T cells following transduction; (4) low CAR-T cell persistence; and (5) high cost of manufacturing virally-produced CAR-T cells.
A virus-free system can overcome most if not all of these hurdles, but electroporation-associated damages in virus-free systems present a critical challenge. In order for a virus-free system to be effective, we need: (1) a robust gene delivery system; (2) an effective system for integrating multiple genes into CAR-T cells; and (3) a robust cell expansion system for producing clinical-scaled CAR-T cells.